AP CALCULUS AB	Activity 0123
Dr. Paul L. Bailey	Thursday, January 23, 2025

Name:

Problem 1. Let A be the set of states in the United States, and let B be the set of all cities in the United States. Let $f: A \to B$ be given by mapping a state to its capital city.

(a) Is f injective? Is f surjective?

(b) Let $C = \{AZ, CA, UT\}$. Find f(C).

(c) Let D be the set of the ten largest cities in the united states. Find $f^{-1}(D)$.

Problem 2. Let A be the set of all presidents of the United States, and let B be the set of all years between 1776 and 2023. Let $f: A \to B$ be given by f: president \mapsto inauguration year.

(a) Is f injective? Is f surjective? Justify your answer.

(b) Let C denote the set of presidents whose last names begins with the letter B. Find C and f(C).

(c) Let $D = [1860, 1880] \cap B$. Find D and $f^{-1}(D)$.

Problem 3. Let \mathbb{N} be the set of natural numbers. Let $A = [50, 70] \cap \mathbb{N}$. Define a function $f : \mathbb{N} \to \mathbb{N}$ by f(n) = 3n. Note that A is in both the domain and the codomain of f.

(a) Find the image f(A).

(b) Find the preimage $f^{-1}(A)$.

(c) Is f injective? Is f surjective?

Problem 4. Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3 - 3x^2 - 2x + 11$. Find $f^{-1}(5)$.

Problem 5. Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3 - 6x^2 + 11x - 3$. Find $f^{-1}(3)$.